Skip to main content

General, Report | Fact Sheet

This fact sheet covers the potential for deeper energy savings and occupant comfort through the integration of lighting controls and automated shading. Research conducted by Lawrence Berkeley National Laboratory found an annual energy savings up to 30% in controlled zones compared to a baseline lighting system. Furthermore, occupant comfort (i.e., non-energy benefit) potential was identified, as the system maintained an acceptable level of Daylight Glare Probability at almost all times and maintained illuminance at the workplane at all times.

Rebates and Incentives, Report | Fact Sheet

In coordination with utility partners Consumers Energy and DTE Energy (DTE), LiITES led an effort to pilot and evaluate current utility incentives and identify opportunities to align incentives with current advanced lighting controls technology. The LiTES Program piloted utility incentives for advanced/networked lighting controls specific to SMCB and sought to identify opportunities for improvement.

Advanced Controls, Report | Fact Sheet

This resource assists decision-makers in understanding how networked lighting control system attributes can satisfy project objectives at an appropriate cost and functionality. It is intended for members of the project team involved in the design and selection of lighting control systems, especially team members with limited-to-moderate controls experience.

Success with lighting controls depends on establishing clearly defined objectives and taking a disciplined approach to design and implementation. This practical guide describes four common use cases for lighting controls and outlines the implementation process, from planning through maintenance. These recommended best practices reflect the experience of practitioners and serve to reduce complexity and the likelihood of problems when installing and using lighting controls.

GSA's GPG program commissioned LBNL to assess wreless ALC at two federal sites in Northern California.  Results showed 54% normalized energy savings for GSA when fluorescent lamps with dimmable ballasts were retrofitted with wireless ALC, and 78% when the wireless ALC retrofit was coupled with LED fixtures. Wireless ALC integrated with LED fixtures is recommended for new construction and renovations, with simple payback between 3 and 6 years. It should also be considered for retrofits in facilities with minimal existing controls, high lighting energy usage, and high electricity costs.

GSA’s Green Proving Ground program recently assessed the potential of wireless sensor technology to provide a cost-effective and facilities-friendly way of helping data center operators visualize and implement system changes that reduce overall energy consumption. Findings include significant cost savings, as well as a substantial reduction in cooling load and CO2 emissions.  Sensors utilizing a wireless mesh network and data management software to capture and graphically display real time conditions for energy optimization were installed in a demonstration project.

This ZNE Technology Application (TA) Guide provides an overview of luminaire level lighting control (LLLC). The full LLLC approach provides controllability at each fixture with real-time energy tracking and data collection, and it aligns with current trends and interests in space utilization, occupant satisfaction and productivity. This TA guide describes the system, features and benefits, energy performance from both modeled and measured results, application considerations, costs and trends.

Controls Integration, Report | Fact Sheet

This document is a guide to help office building owners and energy managers reduce plug and process load (PPL) energy use. It includes a process for developing a PPL control strategy for office buildings, and discusses how the use of integrated controls, including those from lighting, can help connect multiple building systems, save energy in PPLs, and better understand building operations.

"The decision guides found in this resource were created to help building owners find the right control strategy for PPLs in their buildings. The guides are developed for different building types and outline the costs, potential savings, complexities, and user friendliness of various control strategies and their applications to each building type. The guides also aim to help building owners determine whether a control is appropriate for particular project applications such as staged retrofit projects, whole-building retrofits, new construction projects, and projects that involve tenants and landlords. Lastly, the guides provide links to additional resources that can further help building owners assess and reduce the energy use that is associated with PPLs, find rebates for PPL control measures, and procure the right control types for their building equipment."

Fact sheet of three-month study of NREL's Research Support Facility (RSF) that demonstrated that a device inventory and a limited device-level metering effort can produce a disaggregated plug load breakdown, uncovering energy savings opportunities. This study is limited to the RSF, however, and should be validated in other buildings to see if the method is generally effective.

If you are considering smart outlets for your lighting integration project, the National Renewable Energy Laboratory has published a resource that answers common questions and explains the benefits. Smart outlets control the flow of power to devices plugged into them and measure their energy use. These outlets collect control and energy data, which are then sent wirelessly, often via an intermediate gateway, to a cloud database or the building’s energy management system (EMS). With the help of machine learning algorithms, the collected data could be used to predict schedules and save energy. Plug and process loads (PPLs) consume about 47% of primary energy in U.S. commercial buildings. As buildings become more efficient, PPL efficiency has become pertinent in achieving aggressive energy targets.

Commercial, Report | Fact Sheet

NextEnergy led an effort to train contractors, evaluate the experience of ALC/NLC demonstration projects, identify opportunities to reduce market barriers, and accelerate the increased adoption of ALC/NLC technologies within small and medium commercial buildings (SMCB). The LiTES Program defined SMCB as commercial buildings under 100,000 square feet. The LiTES Program efforts also included evaluating current ALC/NLC utility incentives, piloting ALC/NLC incentives specific to SMCB, and identifying opportunities to better align utility incentives with current ALC/NLC technology to support accelerating the adoption of ALC/NLC in SMCB.

The LiTES Program  sought to reduce energy use in small and medium commercial buildings (SMCB) by accelerating the adoption of ALC/NLC through contractor training and technology deployment. Leveraging recommendations already outlined by the DesignLights Consortium Commercial Advanced Lighting Controls (DLC CALC) project, NextEnergy, in coordination with partners, led an effort to train contractors and evaluate the experience of ALC/NLC system demonstration projects in small and medium commercial buildings.