Skip to main content

Higher Education, Recognition Materials

With a large portfolio of buildings, college campuses present a unique opportunity to adopt connected lighting systems for the benefit of the students, professors, administrative staff, and the public. And that’s just what both California State University, Dominguez Hills (Cal State Dominguez Hills) and the University of Minnesota did. Cal State Dominguez Hills wanted to decrease energy costs at James L. Welch Hall (Cal State), a four-story building housing multiple functions, including administrative and admission offices, classrooms, tech support, server rooms, and a police station. The University of Minnesota had similar goals for Jones Hall (UMN), one of their mixed-use buildings on campus with a combination of offices, classrooms, and public space.

Higher Education, Videos

This presentation from Kenny Seeton, Central Plant Manager at California State University – Dominguez Hills, covers the opportunities and benefits of occupancy-based unified controls using Welch Hall as a case study.  Kenny discusses the basis of controls design process, matching lighting and HVAC zones, and energy savings opportunities of integrating lighting with a building automation system.

General, Report | Fact Sheet

General, Webinars | Training

This class examines examples of integrating lighting controls with other building controls, primarily HVAC. Rather than presenting a set of established best practices, it reviews a few notable case studies of commercial and institutional buildings where integration has been both successful and challenging. Presenters describe the design process, how key decision points were identified, and how issues were resolved. They also cover Owners Project Requirements, Basis of Design, and Sequence of Operations, and report on commissioning and post occupancy evaluations.

Rebates and Incentives, Utility Incentive

System Program Manuals and Assessment Methods:  LBNL researchers worked with three sets of Utilities to identify and develop validated protocols for specific building systems. The selected systems were: automated shading integrated with lighting and HVAC controls (working with ComEd in Chicago), task/ambient lighting retrofit integrated with plug load occupancy controls (working with California POUs, NCPA and SCPPA), and workstation-specific lighting with daylight dimming systems (working with Xcel Energy in Colorado and Minnesota).

Advanced Controls, Report | Fact Sheet

Success with lighting controls depends on establishing clearly defined objectives and taking a disciplined approach to design and implementation. This practical guide describes four common use cases for lighting controls and outlines the implementation process, from planning through maintenance. These recommended best practices reflect the experience of practitioners and serve to reduce complexity and the likelihood of problems when installing and using lighting controls.

GSA’s Green Proving Ground program recently assessed the potential of wireless sensor technology to provide a cost-effective and facilities-friendly way of helping data center operators visualize and implement system changes that reduce overall energy consumption. Findings include significant cost savings, as well as a substantial reduction in cooling load and CO2 emissions.  Sensors utilizing a wireless mesh network and data management software to capture and graphically display real time conditions for energy optimization were installed in a demonstration project.

Controls Integration, Videos

This presentation from Michael Myer, Lighting Researcher at Pacific Northwest National Laboratory, covers energy savings potential for lighting systems integrated with HVAC and plug loads, reviewing findings from several field project case studies conducted on behalf of the U.S. Department of Energy.

This presentation from Kandice Cohen, Director of Lighting Strategy at Trane Technologies, covers the reasons integrating lighting systems is beneficial, using a “Baker’s Dozen” commercial kitchen as a case study.  Kandice discusses the integration of the connected lighting control system with the building automation system and how it meets the customer’s needs.

Controls Integration, Report | Fact Sheet

About the ILC, Videos

The Integrated Lighting Campaign (ILC) confers recognition each year to organizations that are helping drive the adoption of advanced lighting systems and the integration of lighting with other buildings and business systems. Supporters (e.g., utilities, designers, ESCOs, energy efficiency organizations, and manufacturers) help the campaign identify and recruit exemplary projects that may be eligible for recognition from DOE. Learn about the new recognition categories for Participants and opportunities available to Supporters, including recognition available as an Exemplary Supporter or DEI Champion and how your products and/or services may be featured in a future case study. For more please visit Better Buildings.

 

Horticulture, Videos

Indoor farming, or controlled environment agriculture (CEA), is an energy and resource intensive process but has the potential to produce high value crops at maximum productivity and resource efficiency when ideal growing conditions are met. To meet ideal growing conditions, the facility’s horticultural systems, like lighting, HVAC, and humidity must be finely tuned and controlled. Integrating these systems can yield synergistic energy savings and, just like commercial facilities, the lighting system and controls can serve as a solid foundation for integration through data collection via sensors and providing a network interface. Watch to learn from the Better Buildings Lighting Systems Technology Research Team and two Integrated Lighting Campaign Recognized partners, University of Vermont and Vertical Harvest Farms, as they share their success stories in integrating their lighting with horticultural controls.