Skip to main content

General, Report | Fact Sheet

This fact sheet covers the potential for deeper energy savings and occupant comfort through the integration of lighting controls and automated shading. Research conducted by Lawrence Berkeley National Laboratory found an annual energy savings up to 30% in controlled zones compared to a baseline lighting system. Furthermore, occupant comfort (i.e., non-energy benefit) potential was identified, as the system maintained an acceptable level of Daylight Glare Probability at almost all times and maintained illuminance at the workplane at all times.

Advanced Controls, Report | Fact Sheet

Success with lighting controls depends on establishing clearly defined objectives and taking a disciplined approach to design and implementation. This practical guide describes four common use cases for lighting controls and outlines the implementation process, from planning through maintenance. These recommended best practices reflect the experience of practitioners and serve to reduce complexity and the likelihood of problems when installing and using lighting controls.

GSA's GPG program commissioned LBNL to assess wreless ALC at two federal sites in Northern California.  Results showed 54% normalized energy savings for GSA when fluorescent lamps with dimmable ballasts were retrofitted with wireless ALC, and 78% when the wireless ALC retrofit was coupled with LED fixtures. Wireless ALC integrated with LED fixtures is recommended for new construction and renovations, with simple payback between 3 and 6 years. It should also be considered for retrofits in facilities with minimal existing controls, high lighting energy usage, and high electricity costs.

GSA’s Green Proving Ground program recently assessed the potential of wireless sensor technology to provide a cost-effective and facilities-friendly way of helping data center operators visualize and implement system changes that reduce overall energy consumption. Findings include significant cost savings, as well as a substantial reduction in cooling load and CO2 emissions.  Sensors utilizing a wireless mesh network and data management software to capture and graphically display real time conditions for energy optimization were installed in a demonstration project.

Controls Integration, Report | Fact Sheet

Fact sheet of three-month study of NREL's Research Support Facility (RSF) that demonstrated that a device inventory and a limited device-level metering effort can produce a disaggregated plug load breakdown, uncovering energy savings opportunities. This study is limited to the RSF, however, and should be validated in other buildings to see if the method is generally effective.

Commercial, Report | Fact Sheet

NextEnergy led an effort to train contractors, evaluate the experience of ALC/NLC demonstration projects, identify opportunities to reduce market barriers, and accelerate the increased adoption of ALC/NLC technologies within small and medium commercial buildings (SMCB). The LiTES Program defined SMCB as commercial buildings under 100,000 square feet. The LiTES Program efforts also included evaluating current ALC/NLC utility incentives, piloting ALC/NLC incentives specific to SMCB, and identifying opportunities to better align utility incentives with current ALC/NLC technology to support accelerating the adoption of ALC/NLC in SMCB.

The LiTES Program  sought to reduce energy use in small and medium commercial buildings (SMCB) by accelerating the adoption of ALC/NLC through contractor training and technology deployment. Leveraging recommendations already outlined by the DesignLights Consortium Commercial Advanced Lighting Controls (DLC CALC) project, NextEnergy, in coordination with partners, led an effort to train contractors and evaluate the experience of ALC/NLC system demonstration projects in small and medium commercial buildings.