Skip to main content

Case Study, Controls Integration

The city of St. Paul upgraded about 13,100 ft2 of its Street Maintenance Division building with a new networked light emitting diode (LED) lighting system integrated with heating, Ventilation, and Air Conditioning (HVAC ) and plug load controls. The city installed the lighting and plug load controls and worked with a lighting manufacturer to commission the networked lighting control system. A local HVAC controls contractor was hired to integrate the lighting with the HVAC system.

The county partnered with Slipstream–a non-profit focused on energy efficiency and climate solutions–to integrate lightemitting diode (LED) lighting with luminaire-level lighting controls (LLLCs), automatic receptacle (plug load) controls, and zoned heating, ventilation, and air conditioning (HVAC) controls in one floor of a multi-story building in downtown Minneapolis. The floor is occupied by an outpatient clinic and a fitness center; both are served by a common variable air volume (VAV) system, covering a total of 7,300 ft2.

The University of Minnesota wanted to reduce energy costs in Jones Hall since the building had fallen behind in some of the University’s aggressive sustainability initiatives and needed new lighting and controls. The mixed-use building, one of many on campus, includes a combination of offices, classrooms, and public spaces, and is currently home to the University’s Admissions, Language Center, and College of Liberal Arts classrooms.

This is a case study for the Tinker Air Force Base. By replacing the existing lighting with LED fixtures, this project saved more than 60% energy compared to the existing technology. This is consistent with savings of converting either fluorescent or high-intensity discharge fixtures with either new LED fixtures or retrofit kits, which typically result in at least 45% savings. The lighting controls saved between 8-23% compared to the LED baseline. Because LEDs are very efficient, the new LED baseline uses less energy. As a result, the 20%+ savings does not result in sufficient savings for a reasonable payback. However, using lighting controls to control other building systems can make the lighting and control system more cost effective.

Controls Integration, Report | Fact Sheet

This document is a guide to help office building owners and energy managers reduce plug and process load (PPL) energy use. It includes a process for developing a PPL control strategy for office buildings, and discusses how the use of integrated controls, including those from lighting, can help connect multiple building systems, save energy in PPLs, and better understand building operations.

"The decision guides found in this resource were created to help building owners find the right control strategy for PPLs in their buildings. The guides are developed for different building types and outline the costs, potential savings, complexities, and user friendliness of various control strategies and their applications to each building type. The guides also aim to help building owners determine whether a control is appropriate for particular project applications such as staged retrofit projects, whole-building retrofits, new construction projects, and projects that involve tenants and landlords. Lastly, the guides provide links to additional resources that can further help building owners assess and reduce the energy use that is associated with PPLs, find rebates for PPL control measures, and procure the right control types for their building equipment."

Fact sheet of three-month study of NREL's Research Support Facility (RSF) that demonstrated that a device inventory and a limited device-level metering effort can produce a disaggregated plug load breakdown, uncovering energy savings opportunities. This study is limited to the RSF, however, and should be validated in other buildings to see if the method is generally effective.

If you are considering smart outlets for your lighting integration project, the National Renewable Energy Laboratory has published a resource that answers common questions and explains the benefits. Smart outlets control the flow of power to devices plugged into them and measure their energy use. These outlets collect control and energy data, which are then sent wirelessly, often via an intermediate gateway, to a cloud database or the building’s energy management system (EMS). With the help of machine learning algorithms, the collected data could be used to predict schedules and save energy. Plug and process loads (PPLs) consume about 47% of primary energy in U.S. commercial buildings. As buildings become more efficient, PPL efficiency has become pertinent in achieving aggressive energy targets.

Controls Integration, Videos

This presentation from Michael Myer, Lighting Researcher at Pacific Northwest National Laboratory, covers energy savings potential for lighting systems integrated with HVAC and plug loads, reviewing findings from several field project case studies conducted on behalf of the U.S. Department of Energy.

This presentation from Kandice Cohen, Director of Lighting Strategy at Trane Technologies, covers the reasons integrating lighting systems is beneficial, using a “Baker’s Dozen” commercial kitchen as a case study.  Kandice discusses the integration of the connected lighting control system with the building automation system and how it meets the customer’s needs.