Skip to main content

Case Study, Controls Integration

The city of St. Paul upgraded about 13,100 ft2 of its Street Maintenance Division building with a new networked light emitting diode (LED) lighting system integrated with heating, Ventilation, and Air Conditioning (HVAC ) and plug load controls. The city installed the lighting and plug load controls and worked with a lighting manufacturer to commission the networked lighting control system. A local HVAC controls contractor was hired to integrate the lighting with the HVAC system.

The county partnered with Slipstream–a non-profit focused on energy efficiency and climate solutions–to integrate lightemitting diode (LED) lighting with luminaire-level lighting controls (LLLCs), automatic receptacle (plug load) controls, and zoned heating, ventilation, and air conditioning (HVAC) controls in one floor of a multi-story building in downtown Minneapolis. The floor is occupied by an outpatient clinic and a fitness center; both are served by a common variable air volume (VAV) system, covering a total of 7,300 ft2.

The University of Minnesota wanted to reduce energy costs in Jones Hall since the building had fallen behind in some of the University’s aggressive sustainability initiatives and needed new lighting and controls. The mixed-use building, one of many on campus, includes a combination of offices, classrooms, and public spaces, and is currently home to the University’s Admissions, Language Center, and College of Liberal Arts classrooms.

This is a case study for the Tinker Air Force Base. By replacing the existing lighting with LED fixtures, this project saved more than 60% energy compared to the existing technology. This is consistent with savings of converting either fluorescent or high-intensity discharge fixtures with either new LED fixtures or retrofit kits, which typically result in at least 45% savings. The lighting controls saved between 8-23% compared to the LED baseline. Because LEDs are very efficient, the new LED baseline uses less energy. As a result, the 20%+ savings does not result in sufficient savings for a reasonable payback. However, using lighting controls to control other building systems can make the lighting and control system more cost effective.

General, Report | Fact Sheet

General, Webinars | Training

This class examines examples of integrating lighting controls with other building controls, primarily HVAC. Rather than presenting a set of established best practices, it reviews a few notable case studies of commercial and institutional buildings where integration has been both successful and challenging. Presenters describe the design process, how key decision points were identified, and how issues were resolved. They also cover Owners Project Requirements, Basis of Design, and Sequence of Operations, and report on commissioning and post occupancy evaluations.

Advanced Controls, Report | Fact Sheet

Success with lighting controls depends on establishing clearly defined objectives and taking a disciplined approach to design and implementation. This practical guide describes four common use cases for lighting controls and outlines the implementation process, from planning through maintenance. These recommended best practices reflect the experience of practitioners and serve to reduce complexity and the likelihood of problems when installing and using lighting controls.

Controls Integration, Videos

This presentation from Michael Myer, Lighting Researcher at Pacific Northwest National Laboratory, covers energy savings potential for lighting systems integrated with HVAC and plug loads, reviewing findings from several field project case studies conducted on behalf of the U.S. Department of Energy.

Controls Integration, Report | Fact Sheet

About the ILC, Videos

The Integrated Lighting Campaign (ILC) confers recognition each year to organizations that are helping drive the adoption of advanced lighting systems and the integration of lighting with other buildings and business systems. Supporters (e.g., utilities, designers, ESCOs, energy efficiency organizations, and manufacturers) help the campaign identify and recruit exemplary projects that may be eligible for recognition from DOE. Learn about the new recognition categories for Participants and opportunities available to Supporters, including recognition available as an Exemplary Supporter or DEI Champion and how your products and/or services may be featured in a future case study. For more please visit Better Buildings.

 

Commercial, Recognition Materials

The Minnesota Department of Transportation (MnDOT) has more than 1,075 buildings with 137 truck station campuses across the state. MnDOT’s Cedar Avenue truck station, located in Richfield, Minnesota, provides critical roadway snow removal support within the Minneapolis metro area. It includes administrative offices, a training room, and a large breakroom, along with truck maintenance and service facilities.

The focus of this case study is to highlight the strategies used at Cedar Avenue truck station for integrating plug load and lighting systems. An integrated controls pilot project with retrofit installation was conducted from October 2019 to April 2020 and has been recognized by the Integrated Lighting Campaign in the following categories:

  • Integrated Controls for Plug Loads & Lighting Systems
  • Integrated Controls for HVAC & Lighting Systems